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ABSTRACT

This work addresses the issue of statistical
model updating and correlation. The updating
procedure is formulated to improve the predictive
quality of a structural model by minimizing out-of-
balance modal forces. It is shown how measurement
and modeling uncertainties can be taken into account
to provide not only the correlated model but also the
associated confidence levels. Hence, a Bayesian
parameter estimation technique is derived and its
numerical implementation is discussed. Two
demonstration examples that involve test-analysis
correlation with real test data are presented. First,
the validation of an engine cradle model used in the
automotive industry shows how the design’s
uncertainties can be reduced via model updating.
Our second example consists of employing test-
analysis correlation for identifying the degree of
nonlinearity of the LANL 8-DOF testbed.

NOMENCLATURE

The recommended “Standard Notation for
Modal Testing & Analysis” proposed in Reference [1]
is used throughout this paper.

1. INTRODUCTION

In structural dynamics, the procedure for
obtaining a correct parametric representation of a
test article is to first create a finite element (FE)
model of the system and then correlate this model
with measurement data taken from the system itself
or some of its components [2]. Applied essentially to
linear systems, this approach has been proven quite
effective when modal data are used in the correlation
process, because 1) experimental procedures in the
form of modal tests permit identification of these

modal parameters; and 2) the same quantities can
be extracted easily from a FE model when the
response of interest involves the low-frequency
spectrum of the dynamics. This procedure is
illustrated in Figure 1 where the FE matrices or a
subset of design variables are optimized until the
test-analysis correlation (TAC) is found to be
acceptable.
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Figure 1. Illustration of Test-Analysis Correlation
and FE Model Updating.

Since many correlation metrics can be
formulated, countless model updating and damage
detection techniques have been proposed and
validated for the past three decades, a
comprehensive review of which can be found in
Reference [3]. For example, we cite TAC metrics
based on the difference between identified and
computed frequencies [4], the distance between test
and analysis mode shapes [5], the change in mode
shape curvature [6], the cross-orthogonality between
test and analysis mode shapes [7], or the verification
of “hybrid” equations of motion where the system’s
representation is given by a parametric model and
the dynamics are described by measurements [8-10].

As the inverse problems of health monitoring
and damage detection grew increasingly popular in



the past years, variability has been observed to be a
major obstacle to the practical implementation of
correlation and FE updating software. Measured
response levels and identified modal parameters
may, for example, vary according to environmental
conditions, such as temperature and humidity [11].
Recently, full-scale damage detection experiments
on various bridges [12-13] have shown that modal
parameter variability can “hide” the effects of
damage, therefore, making it very difficult to assess
the structural integrity of a system based on its
dynamic response.

Nevertheless, well-defined statistical tools
are available for analyzing variability in test data and
taking advantage of it. For example, using statistical
tests it can be assessed if frequency variations are
significant or not. Conversely, confidence intervals
can be obtained by perturbing an experimental or a
computational model [14]. Then, feeding these
confidence intervals together with the baseline data
to a correlation and FE model updating package
might help improving the correlation by taking
advantage of the statistical distribution of test data
and modeling uncertainties. It is this approach,
summarized in Figure 2, that this work aims at
validating.
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Figure 2. Interactions Between Statistical
Treatment of Test Data, Test-Analysis Correlation

and FE Model Updating.

We emphasize that the theory and
implementation of the correlation technique used
here have been first proposed by Alvin in Reference
[15]. Rather than attempting to improve the
algorithm, this work shows using two experimental
testbeds how the approach illustrated in Figure 2 can
help us defining our modeling rules, which is after all
what FE model updating is all about.
2. EXPERIMENTAL TESTBEDS

A brief description of the two experiments
used for validating the statistical correlation
technique is provided in this Section. With the GM
engine cradle testbed, our aim is to show how
modeling rules can be established from a statistical-
based correlation. With the LANL 8-DOF testbed, we
investigate whether the covariance data provide any
insight as to the degree of nonlinearity of the system
tested.

2.1 The GM Engine Cradle Testbed

Our first testbed is a simplified model of
engine support constructed and tested by GM. The
structure consists of two tubular longerons welded to
two transverse beams. A very crude FE model is
illustrated in Figure 3: it involves essentially 116
Euler-Bernoulli beam elements, 4 rotation and
translation springs and it features a total of 672
active DOFs. The most uncertain aspects of the
model are the four welded connections and the
associated joint compliance.
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Figure 3. Geometry, Modeling and Measurement
Locations of the GM Engine Cradle Testbed.

For TAC purposes, we select the subset of
16 nodes indicated in Figure 3 by the solid dots.
Three translation measurements are available at
each instrumented node. The structure is tested in a
free-floating configuration and a description of the
first three non-rigid identified modes is given in Table
1.

Table 1. Description of Identified Mode Shapes of
the Engine Cradle Support.

Identified
Frequency

Description of
Mode Shape Vector

79.0 Hz Out-of-phase Bending-1 of Longerons
170.6 Hz In-phase Bending-2 of Longerons
174.5 Hz Out-of-phase Bending-2 of Longerons

Table 2 shows a typical correlation
attempted between the test data and the FE model



prior to any parametric adjustment. Despite our
simplistic modeling (no offsets, for example, are
introduced to account for the sensors and their off-
centered measurement points), the lowest end of the
frequency spectrum is captured with reasonable
accuracy. It can be observed in Table 2 that no
systematic error seems to have been introduced in
the FE model since the first four FE modes are too
stiff, compared to the identified dynamics, while the
next three are too flexible.

Table 2. TAC Before FE Model Updating
(Identified System Vs. Nominal FE Model).

Identified
Frequency

FE Model
Frequency

Frequency
Error

MAC

79.0 Hz 89.4 Hz 13.2% 98.9%
170.6 Hz 178.4 Hz 4.6% 96.9%
174.5 Hz 180.8 Hz 3.6% 98.4%
214.7 Hz 224.8 Hz 4.7% 97.8%
250.9 Hz 200.6 Hz -20.0% 98.6%
312.2 Hz 251.1 Hz -19.6% 97.1%
315.8 Hz 288.5 Hz -8.6% 96.3%

Further details on the GM engine cradle
testbed are available from Reference [15]. A
thorough investigation is presented where the author
correlates unambiguously the first 14 identified
modes using the same Bayesian updating method
and a more sophisticated FE model.

2.2 The LANL 8-DOF Testbed

The LANL 8-DOF (which stands for Los
Alamos National Laboratory eight degrees of
freedom) testbed consists of eight masses connected
by linear springs. The masses are free to slide along
a center rod that provides support for the whole
system. Boundary conditions are unrestrained.
Figure 4 shows the experimental testbed that is
instrumented with eight accelerometers and where
excitation is provided using either a hammer or a
shaker. Modal tests are performed on the nominal
system and on a damaged version where the
stiffness of the fifth spring is reduced by 14%.
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Figure 4: LANL 8-DOF Testbed.
Table 3 compares the seven flexible modes

identified with the nominal and damaged systems.
Hammer excitations and data averaging are used for
these series of tests. Large damping ratios can be

observed. These suggest that the sliding mechanism
and the friction it generates play an important role in
the dynamics measured. Also, the reduction of
stiffness translates, as expected, into a reduction of
modal frequencies.

Table 3. Identified Modal Parameters For the
Nominal and Damaged Systems.

Nominal
Frequency

Modal
Damping

Damaged
Frequency

Modal
Damping

22.6 Hz 8.5% 22.3 Hz 13.6%
44.5 Hz 4.3% 43.9 Hz 5.0%
65.9 Hz 3.3% 64.8 Hz 3.5%
86.6 Hz 5.0% 85.9 Hz 5.9%
99.4 Hz 2.6% 99.7 Hz 3.6%

113.0 Hz 1.5% 113.2 Hz 2.0%
133.2 Hz 0.7% 131.9 Hz 1.8%

Correlation results are shown in Table 4
between the identified modal parameters of the
damaged system and results obtained with the
nominal (undamaged) FE model. The modal
assurance criterion (MAC) illustrates the excellent
agreement between test and model vectors since
most values are above 90%, despite the unmodeled
stiffness reduction and the effect of friction.

Table 4. TAC Before FE Model Updating
(Damaged System Vs. Nominal FE Model).

Identified
Frequency

FE Model
Frequency

Frequency
Error

MAC

22.3 Hz 21.8 Hz -2.3% 99.7%
43.9 Hz 43.0 Hz -2.0% 99.4%
64.8 Hz 63.0 Hz -2.8% 99.4%
85.9 Hz 80.8 Hz -6.0% 93.2%
99.7 Hz 95.6 Hz -4.1% 98.5%

113.2 Hz 110.3 Hz -2.5% 93.1%
131.9 Hz 116.8 Hz -11.5% 77.9%

It is interesting to notice that this FE model is
already too flexible compared to the damaged test
article (FE frequencies in Table 2 are all smaller than
identified frequencies) even though structural
damage has not been introduced in the model at this
stage. Therefore, prior to our damage detection
experiment, the model is correlated with the nominal
(undamaged) system in an attempt to increase its
stiffness and provide a better starting point.

The LANL 8-DOF testbed is designed for
validating modeling and TAC techniques for
nonlinear, transient dynamics. To this effect, a
contact mechanism can be added that makes two
masses impact each other during the modal tests. In
this work, however, only linear (no impact)



configurations are investigated, whether they feature
damage (in the form of stiffness reduction) or not.

3. DETERMINISTIC FE MODEL UPDATING

In this Section, we present the deterministic
FE model updating technique developed in
References [9] and [15-16]. For simplicity, we restrict
ourselves to the case where only undamped modal
data are considered. However, generalization to
arbitrary data and inclusion of dissipative modeling
offer no difficulty other than programming
challenges.

3.1 Formulation of FE Model Updating

The method consists of minimizing the
modal residue vectors defined as out-of-balance
forces acting on the FE model when the reference
dynamics are represented by a set of identified

modal parameters ω 2 ; φ{ }( ). The residue vectors

are obtained by satisfying

K(p)[ ] φ{ }= ω 2 M(p)[ ] φ{ }+ R f ( p,ω){ }     (1)

where M(p)[ ] and K(p )[ ] represent the model’s
mass and stiffness matrices, respectively. These
depend on design variables p{ } which express the
parametric nature of FE representations. Here, we
define model updating as the procedure by which
these variables p{ } are optimized to minimize the
distance between test data and FE simulations.

Clearly, the out-of-balance residues exhibit
the largest entries at DOFs where the equilibrium is
violated the most. (In the best case scenario, the
numerical model is a perfect representation of the
structure, no measurement noise is affecting the test
data, and the residue vector in equation (1) is equal
to zero because the equation of vibration must be
satisfied.) Hence, the source of modeling error can
be isolated by reviewing these out-of-balance forces
and by investigating the elements connected to
DOFs where they are the largest. This approach is
referred to as force-based modal updating since

entries of residues R f (p,ω){ } in equation (1) are

consistent with forces. Then, an objective function
J(p)  is defined that represents the 2-norm
(Euclidean norm) of our residue vectors

J(p) = R
f
(p,ω ) + α p − p0              (2)

The objective function includes a minimum
change term, or regularization term, that helps
reducing the numerical ill-conditioning characteristic
of inverse problems. From an engineering point-of-
view, it simply means that an optimum design p{ } is
sought after that brings the least possible change to
the original design p0{ }.

Finally, optimization algorithms are used for
minimizing the objective function while satisfying
constraints on the design. Typical choices are order-
zero algorithms (the simplex method) and order-one
algorithms (Gauss-Newton, BFGS and Levenberg-
Marquardt, for which documentation can be found in
Reference [17]). Gradients are required with order-
one optimization methods. They can either be
calculated with a centered finite difference scheme,
which is accurate but becomes computationally
intensive with large dimensional FE models or they
can be estimated analytically based on definition (1),
which is computationally efficient but may yield
convergence difficulties if the mode shapes are
highly sensitive to design changes.

3.2 Matching Test and FE Discretizations

The reason why the objective function (2)
can not be minimized directly using, for example, a
first-order Taylor’s expansion comes from the fact
that, usually, measurements available are
incomplete. Therefore, a mismatch appears in
definition (1) between the identified mode shape φ{ }
(known at measurement locations only) and the full-
size FE matrices. Either model reduction or vector
expansion must be implemented prior to calculating
the modal residues. In the first case, reduced-order
FE matrices become nonlinear functions of the
design variables; in the second case, it is the
expanded vectors that are made implicitly dependent
on the design.

To preserve the ability to locate modeling
errors using out-of-balance forces at each DOF of
the discretization, we chose to expand the test
vectors. Hence, missing mode shape components
are calculated by solving a system of linear
equations obtained by differentiating the objective
function (2) with respect to any non-measured mode
shape DOF.
4. BAYESIAN PARAMETER ESTIMATION

Prior to applying the concepts of statistical
inference to our inverse problem, the basics of
Bayesian estimation are presented in Section 4.1,
the solution procedure is derived in Section 4.2 and a
key issue is discussed in Section 4.3.



4.1 Theoretical Background

The linear problem of parameter estimation
consists of determining the optimal parameters p{ }
such that the following system of (linear) equations is
satisfied

y{ }= y0{ }+ A( p0 )[ ] p{ }− p0{ }( )+ e{ }       (3)

In equation (3), vectors y{ } and e{ } would
typically represent measurements obtained through
the instrumentation of a physical system and the
associated measurement noise, respectively. Matrix
A(p)[ ] is the parametric model used for best-fitting

the test data. We can see that, to obtain the best
possible curve fit, it is desirable to minimize the error
vector e{ }. Dealing with nonlinear parametric
models (which is what we are eventually interested in
for our structural dynamics application) basically
consists of solving similar systems of linearized
equations where matrix A(p)[ ] represents the

gradient, with respect to parameters p{ }, of the
nonlinear model

y{ }= F(p){ }+ e{ },      A(p)[ ] =
∂F

∂p
( p)

 
  

 
      (4)

Hence, the solution procedure for nonlinear
models can be summarized as follows: 1) Calculate
the gradient matrix A(p0 )[ ] at current design p0{ };

2) Solve the linearized estimation problem (3); and
3) Advance the solution and keep iterating until
convergence. Clearly, the core problem of parameter
estimation, whether linear or not, is represented by
the linear system of equations (3).

When it is assumed that the random
variables are normally distributed, it can be shown
that many popular statistical estimators all provide
the same solution. For example, we cite the least-
squares, the maximum likelihood, the minimum
mean square error and the best linear unbiased
(BLUE) estimators. All of these are obtained by
minimizing different objective functions but they yield
the same estimator that we refer to as the “Bayesian
estimator” in the remainder. The reader is referred to
Reference [18] for further details and a
comprehensive list of publications where these
theories are explicated. Note that, for engineering
applications, the assumption of normal distributions
is the usual assumption when dealing with test data

and it also applies to material and geometry
uncertainties to a great extent.

4.2 Practical Solution Procedure

Since many objective functions can be used
as starting points, we define for clarity the Bayesian
estimator as the optimal set of parameters p{ } that

minimize the cost function J(p)  defined by

J(p) = e{ }T See[ ]−1 e{ }

+ p{ }− p0{ }( )T
Spp[ ]−1

p{ }− p0{ }( )
        (5)

In equation (5), matrices See[ ] and Spp[ ]
represent covariance matrices of the error and
parameter change terms, respectively. If left
constant throughout the optimization, the procedure
simply becomes a generalized least-squares
minimization. However, in the general case, the
solution procedure consists of solving the system of
equations obtained by writing the necessary Kuhn-
Tucker condition δJ(p) = 0 . It can be verified that
its solution is

p{ }= p0{ }+ Srr[ ]−1
A(p0 )[ ]T

See[ ]−1
{y}

− Srr[ ]−1
A( p0 )[ ]T

See[ ]−1
A(p0 )[ ] p0{ }

       (6)

where

Srr[ ]= Spp[ ]−1
+ A(p0 )[ ]T See[ ]−1

A( p0 )[ ]       (7)

Equations (6-7) show that many matrix
inversions are required to compute the solution: this
is a practical reason why covariance matrices are
usually approximated and kept as simple as possible.
For example, the covariance matrix of the optimized
design can be estimated as

Spp[ ](new )
= Spp[ ]−1

+
∂e

∂p

 
  

 
  

T

See[ ]−1 ∂e

∂p

 
  

 
  

 

 
 

 

 
 

−1

   (8)

Equation (8) is based on a first-order
approximation where it is assumed that the original

covariance of the model Spp[ ] is “small” compared to

the covariance of the error S
ee[ ], which happens

when the model is a fair representation of the
system. Another approximation commonly used is to

consider that covariance matrices S
ee[ ] and Spp[ ]



are diagonal. This keeps the matrix inversions in
equations (6-8) to their simplest possible expressions
and yields significant computational savings.

Nevertheless, we emphasize that our main
interest in the Bayesian estimation procedure
outlined previously is that it provides an update of
variances SPP (i, i)  as the model is optimized. These
variances characterize the statistical distribution of
the design p{ }. An illustration is given in equation
(8): even though approximations are made, the
diagonal entries of the inverse covariance matrix

Spp[ ]−1
 increase because a positive semi-definite

matrix is added. In other words, variances SPP (i, i)
of design variables p(i)  decrease, which basically
means that the Bayesian estimation can only
improve our knowledge of the system.

4.3 Approximation of Covariance Matrices

As mentioned previously, a critical issue of
Bayesian estimation is to approximate the various
covariance matrices. The procedure we have found
general and effective is to implement a first-order
Taylor's expansion as discussed briefly in this
Section.

The covariance between random variables
{a} and {b} is defined as

Sab[ ]= Ε[ a − Ε[a]( ) b − Ε[b]( )T
]         (9)

where Ε[]  denotes the expected value. In our
structural dynamics application, random variables
such as {a} depend on measured quantities that
feature covariance matrices of their own. For
example, the error e{ } can be defined as the
difference between test and analysis eigenvalues
and modal tests usually provide accurate estimations
of the measured eigenvalue's variances. For
simplicity, we denote these (measured) variables as
{q} and the corresponding covariance matrix as

S
qq[ ]. Then, a first-order Taylor's expansion of a

random variable {a} about the current set of modal
parameters {q0} can be written as

a{ }− Ε[a] = a(q){ }− a(q0){ }

= ∂a
∂q

(q0 )
 
  

 
  q{ }− q0{ }( )

              (10)

Finally, substituting the previous expansion
in definition (9) provides a first-order approximation
for the covariance matrix between random variables
{a} and {b} where gradients are obtained (usually,
explicitly) from the equation of motion and the TAC
metrics

Sab[ ]= ∂a

∂q
(q)

 

  
 

  Sqq[ ] ∂b

∂q
(q)

 

  
 

  

T

               (11)

In our numerical implementation, covariance
matrices are approximated using this procedure,
then, they are reduced to their main diagonal for
providing cheap storage and matrix inversion.
Practically, a zero covariance at an off-diagonal
entry (i, j)  means that random variables a(i)  and
b( j)  are uncorrelated, which is generally the
assumption made when dealing with measurement
noise or modeling uncertainties (and when no
systematic source of error can be justified).

5. BAYESIAN FE MODEL UPDATING

After having discussed the general theory of
Bayesian parameter estimation, it is now applied to
FE model updating. Rather than showing how to
derive the entire procedure, we provide a brief
summary in Section 5.1 and the key issue of mode
shape expansion is discussed in Section 5.2. The
reader is referred to Reference [15] for more details.

5.1 Formulation of the Inverse Problem

In the light of Section 4, generalizing our FE
model updating procedure to include the Bayesian
estimation concept is rather trivial. The objective
function (5) is minimized using error vectors e{ }
defined as our modal residues (1).

One major difference with the linear case
described in Section 4 is that the state equation that
relates the error e{ } to variables p{ } is no longer
linear. Measurement incompleteness introduces an
implicit relationship between expanded test vectors
and design variables. To minimize the objective
function, we must therefore employ the same
optimization algorithms as before (see Section 3)
and centered finite differences are used whenever
gradients are needed.

The last remaining difficulty is the calculation
of covariance matrices for our modal residue



vectors. According to the procedure outlined in
Section 4.3, they are first estimated using order-one
expansions, then reduced to their main diagonal.
With modal data, the only two variables to consider
in the generic solution (11) for a given mode are the
identified eigenvalue ω2

 and mode shape φ{ }.

Their variance/covariance data are denoted by sωω

and Sφφ[ ], respectively. Then, the covariance of
modal residues is approximated from equation (11)
as

SRR[ ]= sωω M[ ] P[ ] φ{ } φ{ }T( )P[ ]T
M[ ]T

+ Z[ ] P[ ] Sφφ[ ] P[ ]T Z[ ]T
       (12)

where Z[ ]= K[ ]− ω2 M[ ]( ) is the dynamic stiffness

matrix and where the notation is simplified to
M[ ]= M(p)[ ] and K[ ]= K(p)[ ] for clarity. In

equation (12), matrix P[ ] represents the modal
expansion: it is a transformation matrix that projects
the measured mode shape φ{ } into the full-order FE
space. Many different expansion techniques can be
implemented, which is why matrix P[ ] is left
somewhat arbitrary here. For more details,
Reference [19] provides a description of popular
expansion matrices that can be used.

This concludes our presentation of the
Bayesian estimation technique applied to FE model
updating. In the next Section, we emphasize the
coupling between covariance matrices and modal
expansion because it is, to our opinion, the key issue
of the computational procedure.

5.2 Incomplete Measurement Coupling

To show how coupling is introduced between
covariance matrices and modal expansion, we need
to define the expansion matrix used.

For simplicity, we partition symbolically the
expansion matrix according to the measured and
non-measured DOFs. Usually, the part of the
projection matrix acting on instrumented DOFs is
simply equal to the identity because the expanded
mode shape is required to reproduce the test data at
measurement points. As mentioned previously,
modal expansion results from solving the system of
linear equations obtained by differentiating the
objective function (5) with respect to non-measured
DOFs. By doing so, it can be verified that, for a given
mode, the expansion matrix consistent with our cost
function is equal to

P[ ] =
I[ ]

− Z2[ ]T S
RR[ ]−1 Z2[ ]( )−1

Z2[ ]T S
RR[ ]−1 Z1[ ]( )

 

 
 

 

 
 

(13)

In equation (13), notations Z1[ ] and Z2[ ]
represent partitions of the dynamic stiffness matrix:
the first one is a restriction to the columns of
instrumented DOFs while the second one is a
restriction to the columns of non-measured DOFs.
Comparing equations (12) and (13) shows that the
projection and covariance matrices are required to
calculate each other. Clearly, solving the system of
nonlinear equations (12-13) for P[ ] and SRR[ ] is out
of the question, even with small FE models. Instead,
it is resolved in a staggered way: modal expansion
(13) is performed using the covariance matrix from
previous iteration; then, variances are updated with
equation (12) using the newly expanded test data.

As pointed out in Reference [18], this
computational procedure is similar to the predictor-
corrector steps of Kalman filtering. Nevertheless, we
have witnessed the high computational requirement
of handling the coupling (12-13). Also, numerical
difficulties may arise during modal expansion (13)
where ill-conditioned systems of equations must be
inverted.

6. ILLUSTRATION OF MODEL IMPROVE-MENT
WITH THE GM ENGINE CRADLE TESTBED

The Bayesian parameter estimation
procedure is first applied to the GM engine cradle
testbed. Our purpose is to assess by how much our
very simple FE model can be improved and to
estimate the degree of confidence the analyst can
have in the updated model.

The updating discussed here consists of
using only the first three identified modes to refine
the model. These are provided at 48 measured
translations, meaning that 7% of the model's DOFs
are measured, a ratio of measurement points typical
of those encountered in the automotive industry. The
modulus of elasticity of each element is allowed to
be modified but reductions smaller than 50% of
increases greater than 200% are not permitted. This
approach is chosen, rather than grouping elements
that belong to the same component together, for
checking how consistent corrections brought to the
model are. We also mention that our software is
currently being validated under the form of a Matlab



toolbox for FE modeling, parametric adjustment and
optimization of structural dynamics models.
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Figure 5. Convergence of the Updating.

Figure 5 illustrates a typical convergence
curve obtained when the GM engine cradle model is
updated. A total of ten optimizations are performed
using a gradient-based, Newton-Raphson algorithm.
Usually, a single optimization is sufficient to identify
most of the modeling error, as shown in Figure 5 by
the steep slope of the curve during the first
optimizations.

We have learned from this application the
high cost of coupling FE model updating to Bayesian
estimation. Up to one hour of CPU time is spent per
optimization, when running Matlab 5.1 on a Silicon
Graphics R10,000 processor. One reason is that
Matlab is an interpreted rather than compiled
language (even if its basic math functions are
compiled) . Another is that singular systems of
equations must be inverted when covariance
matrices are updated, which requires special
algorithms that are not available for sparse matrices
in Matlab’s core environment. These are therefore
custom-made or replaced with full-matrix algebra,
both solutions being very expensive in terms of CPU
time.
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Figure 6. Updating of the GM Engine Cradle FE
Model.

Figure 6 shows the updating results. Bars
represent the percentage of change brought to each
element of the model. Modifications are brought
essentially to the first transverse beam: stiffnesses
are increased by 120% in average near the two joints
and decreased by half in the center. The second
transverse beam is not modified significantly.
Although it is not enforced during the updating,
Figure 6 shows that the two longerons receive the
same correction, which is actually expected due to
the symmetry of the geometry and the mode shapes
used during the updating (refer to Table 1).
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Figure 7. Final Variance Data For the Adjusted
GM Engine Cradle FE Model.

Variance data after the tenth optimization are
illustrated in Figure 7. The Bayesian estimation is
initialized with a uniform 10% variance of all moduli
of elasticity. Figure 7 shows that most values are
reduced to less than 1%. This is especially true for
the two longerons, which basically means that the
family of models that could be used for representing
the longerons exhibits very little dispersion. The
larger variance levels can be seen as an indication of
where the modeling is still faulty. For example, the
first longeron exhibits slightly more dispersion than
the other one. These higher variance results are
associated to FEs located where the first transverse
beam is welded, which is consistent with the
significant refinement brought to the first beam.

Table 5. TAC After FE Model Updating (Identified
System Vs. Adjusted FE Model).

Identified
Frequency

FE Model
Frequency

Frequency
Error

MAC

79.0 Hz 80.6 Hz 2.0% 98.5%
170.6 Hz 171.8 Hz 0.7% 96.8%
174.5 Hz 173.3 Hz -0.6% 98.2%
214.7 Hz 210.3 Hz -2.1% 97.5%
250.9 Hz 239.6 Hz -4.5% 96.6%



312.2 Hz 276.1 Hz -11.6% 95.5%
315.8 Hz 359.7 Hz 13.9% 96.3%

Finally, Table 5 gives the TAC between the
updated FE model and test data. It should be
compared to Table 2 before updating. Clearly, the
correlation is improved significantly. The first mode
that was 13% too stiff before updating is now
predicted with an acceptable 2% frequency error.
Corrections brought to the first transverse beam are
consistent with this improvement: the first mode
features out-of-phase bending of the longerons and,
therefore, it is expected to be very sensitive to
modifications of the transverse beam component.

In conclusion, we measure the success of
the update by the fact that modes 4-7 that were not
included in the correlation procedure are predicted
with better accuracy by the updated FE model.
Furthermore, variance data in Figure 7 can be used
to indicate where further improvement is needed. We
emphasize that, without Bayesian estimation, such
information would simply not be available.

7. ILLUSTRATION OF NONLINEARITY
ASSESSMENT WITH THE LANL 8-DOF TESTBED

In this Section, we discuss an application of
Bayesian estimation to the updating of a simple
model that does not account for a source of
nonlinearity otherwise present in the test data. Our
goal is to suggest another potential use of variance
information, namely, the detection of nonlinearity
sources.

As previously, only the first three identified
modes are used during model refinement. These are
provided at all translation DOFs, therefore,
alleviating any type of modal expansion of FE matrix
reduction. The axial stiffness of each spring is
allowed to be modified. It is recalled that the
experiment consists of identifying a 14% reduction at
spring number 5 and that friction is not included in
the modeling.
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Figure 8. Updating of the LANL 8-DOF FE Model
(Top: TAC With Undamaged Data; Bottom: TAC

With Damaged Data).

Results of two updates are illustrated in
Figure 8. First, the model is adjusted to match the
nominal, undamaged system (top of Figure 8). It can
be noticed that a stiffer system is produced as a
result of this correlation. The first spring stiffness is
changed by nearly 22%: we attribute this large
variation to the driving point measurement and its
attachment system that are not modeled, although
the total mass is correct. In a second stage, this
adjusted model is updated again, this time using the
damaged test data (bottom of Figure 8). It can be
observed that the location and extent of damage are
predicted with reasonable accuracy.

Table 6. TAC After FE Model Updating (Damaged
System Vs. Adjusted FE Model).

Identified
Frequency

FE Model
Frequency

Frequency
Error

MAC

22.3 Hz 22.3 Hz 0.2% 99.8%
43.9 Hz 44.3 Hz 1.0% 99.7%
64.8 Hz 65.7 Hz 1.4% 99.7%
85.9 Hz 83.9 Hz -2.4% 96.9%
99.7 Hz 99.6 Hz -0.4% 99.7%

113.2 Hz 110.1 Hz -2.7% 92.1%
131.9 Hz 117.6 Hz -10.9% 75.2%

Final results of this correlation are presented
in Table 6. As before, a significant amelioration over
figures presented in Table 4 (before updating) is
noticeable. While MAC values remain essentially
unchanged, the prediction of the first five modes is
improved which is encouraging considering that only
modes 1-3 were used during updating.
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Figure 9. Final Variance Data For the Adjusted
LANL 8-DOF FE Model.

Variance data obtained after the optimization
are pictured in Figure 9. The contrast with results of
Section 6 is striking: although the updating is clearly
successful (the structural damage is identified and
the TAC is improved), variance data remain close to
their original 10% level throughout the model. (The
reader should not be mislead: the variance does not
increase after updating, as we have seen that it is
mathematically impossible. It is the ratio of updated
variance to updated stiffness that increases for some
springs.) Although this example does not constitute a
formal proof, we believe that these residual high
dispersions point to a systematic modeling error: the
friction not introduced in our linearized FE model.
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Figure 10. Updating of the LANL 8-DOF FE Model
and Final Variance Data Obtained Using

Numerically Simulated “Test” Data.

To verify this hypothesis, one final test is
performed. Using our nominal FE model, “test” data
are simulated numerically with a reduction of 14% of
the fifth spring stiffness. Updating is then performed

with the numerical data instead of the experimental
data. The first one of Figure 10 shows the updating
result and the second one illustrates the updated
variance. The conclusion is that variances obtained
with the test data are much higher than those
obtained with the simulated data. In both cases, the
sensing configuration is the same, modes 1-3 are
used for the update and measurement noise is not
assumed to be an issue of concern. We conclude
that the parametric form of the FE model is
inappropriate to capture the measured dynamics
while it is obviously correct in the case of simulated
data.

8. CONCLUSION

We present an application of Bayesian
parameter estimation concepts to finite element
model updating. The updating procedure is
formulated to improve the predictive quality of a
structural model by minimizing out-of-balance modal
forces. The critical issues of modal expansion and
covariance matrix updating are addressed.

Practically, this procedure enables
measurement and modeling uncertainties to be
considered not as “nuisance” any more but as
additional inputs provided to the correlation
procedure. In return, confidence levels associated to
the correlated model can be assessed.
Demonstration examples using real test data, linear
and nonlinear systems are discussed to illustrate the
benefits of this approach. Although this work remains
a first step in the overall assessment of the method,
we conclude to the usefulness of Bayesian model
updating provided that some numerical difficulties
can be resolved.
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